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FOREWORD

This informal technical report describes technical work accomplished

during the Evaluation and Analysis of Gas Turbine Internal Flow

Restrictors program conducted under Contract F33615-85-C-2575. The work

described was performed during the period 1 August 1985 to 20 April

1986. This contract with Universal Energy Systems, Inc. and Allison Gas

Turgine Division of General Motors Corporation was sponsored by the

Aeropropulsion Laboratory, United States Air Force, Wright Patterson AFB,

Ohio, with Mr. Richard Martin (AFWAL/POTX) as Project Engineer.

Technical coordination was provided by 2nd Lt. Gary Willmes. Contract

was managed by Dr. James R. Twist.

-- The technical effort reported was directed by Dr. Philip Snyder and

supervised by Mr. Rodney Vogel. Mr. W. David McNulty collected much of

the reference material for the research.

Publication of this report does not constitute Air Force approval of the

findings or conclusions presented. It is published only for the exchange
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I.INTRODUCTION

The performance of a modern, high temperature gas turbine engine is

- compromised significantly by associated requirements for component cooling

This cooling is normally accomplished with air bled from the "cold",

compressor end of the engine. Consequently, the paths provided to conduct

this cooling air require careful design and flow analyses for effective

utilization of bleed air resources. Gas path leakage, which may not provide

any useful function, occurs between engine components. The combined cooling

and leakage flows must be determined and their impact on engine performance

evaluated.

.S The determination of these cooling and leakage flows, called the internal flow

analysis, requires the mathematical modeling of a complex network of conduits

* and restrictions located inside and outside the main gas path from the engine

inlet to the final nozzle. The total pressure losses through these conduits

and restrictions must be characterized so that the flow capacities can be

calculated. Two parameters are used somewhat interchangeably for the flow

characteristics or the total pressure loss characteristics of the constituent

restrictions. The discharge coefficient, C D'is a measure of the flow

passing through a restriction relative to the calculated ideal flow at the

actual upstream and downstream pressures. The total pressure loss

coefficient, k, is a measure of the energy required to drive the actual

flow through the restriction. For example at the same operating

%A1 conditions, the discharge coefficient and the total pressure loss

.1 coefficient based on maximum upstream dynamic pressure are related as

C1
CD-

NJ k-k e+1I

% for a restriction in the incompressible flow regime.

sq 
11'omenclature definition is found on page 122.
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The purpose of this program is to formulate flow characteristic models for

conduit bends and turns, branches, sudden area changes, and orifices

applicable to the restrictions in the internal flow systems of gas turbine

- engines.

r Modeling of flow through the interior cooling and leakage passages of gas

turbine engines is an inexact science. These passages are often of

unconventional geometries for which experimental data do not exist and for

- which numerical fluid dynamic analysis is unreliable or impractical. As the

result of in situ performance variations due to local conditions of

turbulence, approaching flow profile characteristics, proximity of downstream

~ 5' restrictions, heat transfer, and engine-to-engine configuration and

dimensional variations, careful rig tests on the actual engine parts will not

yield precise flow characteristics for the internal flow system model. These

* uncontrollable consequences of gas turbine engine design distinguish this flow

network analysis from the more exact solutions for conventional piping or

ducting systems. The accurate modeling of internal flow systems of gas

turbine engines now relies on the modification of "reference"' restriction

characteristics with application-specific empirical factors based on global

experience from engine testing. These limitations do not preclude the

reasonable preliminary predictions of internal flow system performance for

untested engine designs. Fortunately, the internal flow system is typically

comprised of many restrictions in series and parallel arrangements. The

composite nature of such flow networks generally relegates the flow

restriction characteristics to secondary importance with respect to the

correct evaluation of flow areas.

An exhaustive literature search indicated that the k-factor is the parameter

of choice for general restriction geometries. However, the definition of the

k-factor does not enjoy the same consensus. The flow models presented in this

* - report are based upon total pressure loss k-factors which are referenced to

flow conditions calculated at the minimum cross-sectional area at the upstream

end of the restriction. The rationale for this selection is discussed in the

theoretical analysis section.

2



The important objectives of k-factor modeling are:

2
1) Prediction of realistic trends and boundary values at approximately

- correct levels of k-factor for the component geometry at local average

flow conditions.

2) Relatively simple (usable) formulation of the primary geometric and

fluid dynamic parameters into a correlation representative of a broad

range of configurations and flow environments.

Such k-factor models allow realistic comparisons for the evaluation of design

changes and environment modifications. Prediction of absolute performance

levels will usually require an experienced adjustment of the appropriate

k-factors to match experimental results.

_

Often internal flow system models for new engine designs are synthesized

initiilly with k-factors for a static orifice, k 2.7 and for an isentropic

nozzle, k = 1.0 , in conjunction with exact calculations of the controlling

passage areas These models can be surprisingly accurate when carefully

formulated by an experienced flow analyst The preliminary internal flow

model is refined using component k-factors appropriate to the engine design

, details Later, when engine performance testing yields measured pressures and

temperatures for the internal cavities and passages, the k-factors for the

controlling restrictions can be modified to simulate the in situ pressure

changes.

Assessing the validity and accuracy of k-factor models for even basic

restriction geometries is difficult or impossible without extensive

experimental support. Generalized k-factor models are nonexistent for the

2 These "boundary values" could also be termed limiting or extremum

values. As an example, the flow losses for bends of increasing radius
Rratio, r/A, or decreasing bend angle, E, should approach the wall

friction loss for a straight duct of equal bend length and the same
cross-sectional geometry as a lower limit.

3
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P broader ranqe of restri(tion qeometries necessary for gas turbine internal

flow analysis When the effects of un(onventional installations and fluid

flow environments are (onsidered, the ability to precisely predict restrictin

flow characteristics is presently unattainable However, the purpose of this

study is to develop approximate k-factor models for generic bends and turns,

branches, sudden area changes, and orifices common to gas turbine secondary

flowpaths These algorithms will produce representative trends and boundary

values for the identifiable variables of the geometry and the flow prociesses

Open literature contains many performance models for the basic restrictions.

Some of these empirical models were derived from poorly controlled or

incompletely formulated experiments. Consequently, some of the available

k-factor models are limited to unspecified ranges of influential geometri(

and/or flow parameters A few k-factor models even produce physically

inconsistent performance predictions in particular operating regimes. A small

sample of these exceeding limited k-factor predictions are derived from

oversimplified analytical models of the flow phenomena.

Sometimes recognized expert opinions exist about the reliability of certain

restriction models. Beyond this the only viable procedure for selecting among

the potpourri of k-factor models must rely upon comparisons of performance

predictions at selected conditions for several of the more comprehensive

models and upon evaluation of their boundary values where possible. The

development of the k-factor models, or perhaps more correctly the synthesis of

the k-factor models, for application to the analysis of internal flow systems

in gas turbine engines will be accomplished with such a procedure. One or

more sources will be utilized to produce a consistent algorithm of acceptable

accuracy that will predict realistic performance trends for variations in

component geometry and flow conditions.

The k-factor models sought in this study will be formulated with influence

coefficients to correct the "reference" performance predicted for a basic

..,. geometry and flow environment, e g ,

V-; k f(xyzRe)

044
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for the effects of non-standard geometry or- unusual flow conditions,

k = C. C fC Mk

Basic flow environments are generally for the isolated component in the

incompressible regime. This implies fully developed entrance flow and the

effect of complete downstream pressure recovery. The influence coefficients

for variations from the basic geometry or standard incompressible flow

- characteristics will be developed from available data sources. It is worth

noting that the k-factors referenced to the dynamic pressure remain relatively

* constant for many restriction components over a wide range of flow

conditions. Therefore, when information does not exist to permit the

extension of a model to a broad spectrum of operating environments, the

application of the incompressible characteristics to high velocity flows still

may be warranted.

5
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I.THEORETICAL ANALYSIS

The analyses of the internal flow systems of gas turbine engines are based on

- traditional one-dimensional compressible formulas where the parameter

gradients and the velocity profiles are approximated by "average" conditions,

V = m/p A

Then the apparent loss of "average" total pressure, which results from the

use of effective velocity to represent velocity profile, is absorbed in the

real system total pressure loss (1). 3The internal flow system is "complex"

from the standpoint that most of its duct geometry changes (form drag) tend to

overwhelm wall friction (skin drag) as the source of total pressure losses.

The proximity of the restrictions in series is such that fully developed

laminar or turbulent flow is seldom achieved. This transitional flow

* - environment contributes to the uncertainty of the one-dimensional analysis.

-. However, the basic simplicity of the formulation and the ability to iterate

* - the model coefficients from experience make the approach viable and perhaps

preferable.

The calculation for internal flow system performance generates a network of

flows, pressures, and temperatures throughout the cooling and leakage paths in

the engine. The steady-state solution has an electrical analog where the

restriction k-factors are similar to the resistances and the flows (currents)

are found by Kirchoff's law. The total pressures are comparable to the node

voltages. The most important descriptors for a typical internal flow system

model are the accurate values for flow path cross-sectional areas. The flow

area is crucial to the determination of flow and is of first order importance

X. in the estimation of the total pressure loss across restrictions. The basis

for defining the k-factor models and the application of these models to the

duct geometries which are encountered in gas turbine internal flow systems are

discussed.

3 Bracketed numbers refer to References, page 69..

6
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Selection of the Generalizing Parameter for k-Factor I
Conventional usage employs the dynamic pressure,

q = pV 2 / 2,

as the reference parameter for generalizing internal as well as external drag

and pressure loss coefficients for incompressible flows. However, when

compressibility effects become important to high velocity flows of gases,

there seems to be no consensus on the reference parameter for drag and

pressure loss calculations. External aerodynamics has retained the dynamic

- pressure reference on a uniform basis,

F = C (PV 2)A
d d 00 ref

Internal aerodynamics vacillates between the traditional dynamic pressure, q

and the impact pressure, (P - p),

- Pl - P2 =kq orPmpax(Pp

1 _ = or P - P2 k+ (P - P)max

Both parameters are functions of Mach number and Y,

q Y 2 Y - 1 2 1 -Y
- M (1+ M2)

41p 2 2

and

-- P 1- (1+ Y - I M2 1-y

P 2 )

Therefore, either is capable of serving as the generalizing parameter for the

kinetic energy effects in compressible flow. In fact, the pressure loss

coefficient based on reference area, A , for any restriction can be

converted between a dynamic pressure basis and an impact pressure basis

without loss of accuracy or generality as

(1 + )Y- - 1
k 2 n k +

Y M 2 n
2 n

1~. 7
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For incompressible flow,

k =kn n

since P

Some k-factor data are referred to restriction exit (downstream: n = 2)

conditions. This k-factor definition requires an additional iteration to

establish the total pressure loss across each restriction. For a given

flowrate, total temperature, and duct area, a downstream total pressure must

be assumed,

P P2 A 2 2

When

P 2 = P 1 k2 q2 = P2 assumed

the solution has been found. This complication is avoided by using a direct

serial solution involving the maximum dynamic pressure at the restriction

entrance (upstream: n = 1) as the reference parameter. The upstream and

downstream k-factors for a specific restriction are related implicitly by

2k2

q)1 1 + k2 IPq•~~ V' k I (

A certain commonality is exemplified by the conventional use of dynamic

pressure as the reference parameter for the surface drag coefficient for the

compressible flow over immersed bodies and for the wall friction in conduits

(FANNO flow).

Benedict and Carlucci (2) have shown that the application of k-factor values

based on inlet conditions, kI , to the equivalent length analysis where

HD k 1

8



will overestimate the total pressure loss for compressible flow. ihe k-factor

or 4 f PI 0 in this FANNO type analysis is applied to a continually increas-

ing dynamic pressure due to a uniformly distributed loss mechanism through the

constant area" restriction. Therefore, a smaller k-factor correlates with

the total pressure loss at a given inlet flow condition.

Very little reliable data are available on the k-factors for restrictions of

conventional geometry operating in the compressible flow regime. Almost no

data exist for the more unusual restriction configurations common to gas

turbine internal flow systems. The best data are normally found for

incompressible flow through typical pipe and duct geometries. Fortunately,

& the k-factors based on maximum inlet dynamic pressure are relatively

- insensitive to Mach number for many restrictions (3). The compressibility

effects generally become important above Mach 0.3 where the velocities

* -. approach or exceed the critical Reynolds number so that the flow is in the

fully turbulent regime.

The selection of maximum inlet dynamic pressure as the reference parameter for

total pressure loss coefficients has the merit of minimizing coefficient

sensitivity to compressibility effects for most loss mechanisms. The dynamic

pressure is analogous to the kinetic energy of the fluid stream. The impact

v pressure includes the latent energy absorbed by the compressibility of the

fluid in addition to the kinetic energy. The maximum inlet dynamic pressure

* was chosen as the reference parameter for generalizing the characteristics of

the total pressure loss coefficients for all of the restriction geometries

investigated, with the exception of the sudden expansion. The use of the

maximum inlet impact pressure to characterize the sudden expansion results in

the advantage of a unity loss coefficient for any jet discharging into a large

plenum. The selection of dynamic pressure or impact pressure as the

generalizing parameter, and the choice of reference area at the inlet or exit

of the restriction is arbitrary. However, the k-factor must be applied to the

value of the generalizing parameter for which it was derived at the

restriction area to which it was referenced to produce correct predictions of

* total pressure loss.

9
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Solutions with Duct Cross-sections of Untested Configuration

Most pressure loss data available in the public domain are for circular or

rectangular duct cross-sections. Some data exist for annular duct geometries,

but their restriction configurations are limited primarily to constant area

and gradual expansions. However, many unusual duct shapes, and particularly

annular ducts, are encountered in the analysis of the internal flow systems of

gas turbine engines. Consequently, when the diameter of an equivalent

circular cross-section is required for the evaluation of a flow parameter such

as Reynolds number or equivalent duct length, the hydraulic diameter is

generally employed,

HO 4 4A

*For a circular duct HD d so that

A HD
4

For an elliptical duct HO so that

A f (1 a

4 2

For an annular duct HO D - d so that

2 a b
For a rectangular duct HO a + a-b )so that

HD
A= a +-b -

- An analogy between annular and rectangular cross-sections reveals that as a/b -0,

the rectangle becomes similar in geometrical characteristics to an annulus of

small hydraulic diameter where

(0 D+ d ) (a + b)

10
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and

1 urn HD 2 a =2aafb- 4 +a
b

or more simply]

D b

and 1
2 L(D-d ) a

This artifice permits the evaluation of' many annular restrictions from the]
comparable restriction data for the analogous rectangular duct.

The applications of the theoretical analyses selected for deriving pressure

loss algorithms for turns and bends, combining and dividing branches, sudden

expansions and contractions of flow area, and orifices will be discussed in

- the following sections.

'pt



Ill. TOTAL PRESSURE LOSS COEFFICIENTS FOR TURNS AND BENDS

Bends care among the more difficult internal flow loss geometries to estim~ate

accurately. The duct geometry and condition of the flow exert very strong

influences on the total pressure loss due to the generation of complex

secondary flows and downstream recovery processes. For example, circular-arc

bends of round or square cross-section develop twin counter-rotating helicalJ

vortices which tend to stabilize the flow, as shown in Figure 1. If the duit

* - cross-section is unconventional, e.g., triangular, polygonal, etc., the

secondary flow can become complicated with more than two vortices.

Inversely, turning in a duct with a narrow annular cross-section may not

produce any secondary flow. Combining the effects of duct shape and wall

roughness with the rate and amount of turning makes the loss analysis for

simple, single circular-arc bends very difficult,

The location and flow Prnvironment of bends in turbine engine cooling arid

leakage paths rarely meet the modeling criteria for upstream and downstream

tangent lengths or fully developed velocity profiles. The total pressure loss

in a bend is very sensitive to the conditions in the entering flow as

established by upstream tangent length, wall roughness, and flow

disturbances. The length of the downstream tangent and flow blockage is even

more important to the pressure loss as the result of the nature of the

recovery process in the flow leaving the bend. Bends in gas turbine engine

flow systems are routinely in the region of influence of upstream and

downstream restrictions, which contributes to the difficulty of predicting

.2total pressure losses In addition, the flow area through the bends

frequently changes in cooling and leakage paths. The consideration of these
application variables make the total pressure loss prediction for internal

P flow system bends uncertain at best,

12
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Bends can be classified according to distinct physical characteristics of the

flow. The rate of turning has the greatest effect or the flow through bends

and is used in Table 1 to distinguish among the primary types and the physical

processes dominating their- particular flow fields.

Table I.
Classification of Simple Circular-Arc Bends on the

Basis of the Loss Mechanisms Dominating the Flow Fields.

Bend Type r/h Predominant Loss Mechanism

Long Bends > 14 Wall friction

Short Bends < 14 Combined flow separation
> 0.5 and wall friction

Mitre Bends <0.5 Flow separation

Reference to Figure 2 shows that turning flow in most gas turbine engine

restrictions resides in the short bend (and mitre bend) category. As the

- result of the generally elevated pressures and temperatures and the high flow

velocities in gas turbine engines, the flow in short bends will usually be

turbulent, R e> 20000, as predicted by Figure 3.

The analysis of internal flow systems in qas turbine engines must attempt to

account for the effects of the many variables which influence the total

pressure loss in a bend. The effects of the following parameters on bend

losses are usually considered where the availability of quantitative data

permit:

Bend Geometry
cross-sectional shape
turning rate
amount of turning
area change

Bend Flow Conditions
laminar, transitional, or turbulent
wall roughness
upstream tangent length
downstream tangent length

14
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The evaluation of these effects will be discussed as they apply to the siriyl

circular-arc bend types The modeling of compound bends and multiple bends.

will not be considered. The bibliography contains several references which

-- treat these subjects in varying degrees of analytical depth Miller (5) and

*m ESDU (6) are recommended sources of reliable performance data. The algorlthI

presented for bend losses apply to turbulent, incompressible flow 1he

reliable data references seem to agree upon the application of the

i_ incompressible loss factors to compressible flows within the present

_ state-of-the-art. The experimental and analytical data are not yet

sufficiently reliable to warrant a distinction at this time

When a more precise solution is required, and the bend installation and flow

quality justify the analytical complexity, reference (4) can be used to model

bend K-factors

Basic Circular-Arc Bends

The empirical model for K-factors proposed by Ito (7) is recommended for

turbulent flow through bends of circular cross-section in references (1), (4),

and (8), among others. The total pressure loss predicted by the Ito model is

slightly greater than that predicted in reference (9) However, the wall

friction loss is included in the Ito formulas while the plots in reference (9)

represent turning loss alone,

K b(9) K b(7) - 4f E(-D)

The bend model by Ito is limited to hydraulically smooth walls so that a

correction for rough walls is required. Although the algorithm has been
4 5

validated by test data for a Reynolds number range of 2 (10 ) to 4 (10),
6

the formulas can be extrapolated to a Reynolds number of 1 (10 ) with

acceptable accuracy Bend loss does not change significantly with Reynolds

6
number greater than 1 (10 )

17
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Long bonds Re <r 364

K = 0,01746 am f0

* Since this equation applies to a minimum r/h of 7.4, its use in gas turbine

internal flow analysis arises infrequently.

* - The secondary flows present in bends of circular cross-section generate addi-

tional losses due to wall friction. These smooth-wjall friction losses are

correlated for curved turbulent flow at Re h ( 1200 by H. Ito (10) as
Nr

0.0205 0.304

c 1 12 1/4

The implied region of validity extends to short bends with n/h as small as 4.1

* in addition to the entire long bend envelope.

Short Bends (not including mitre bends)

Kb = 0.00431 a. e Re-01(r).8

The turning losses for long and short bends are correlated by the a term as

determined from Table Il.

A linear interpolation between the defined bend angles produces consistently

0 smooth k-factor characteristics, as illustrated in Figure 4. The bend loss

characteristics generated for 90 dog short bends are plotted in Figure 5

Idel'chik contends in reference (13) that all turns and bends are essentially

independent of the relative roughness, E/ D, of the wall at Reynolds numbers

. . .. .. . . . . .8



Table II.
Turning Loss Factors for the Bend Loss

Model by Ito (7).

h_-deg r/ha

-1 .47

45 ci = 1 + 5.13 ~14

-1.96
90 < 9.85 a = 0.95 + 4.42 ()

> 9.85 a = 1.0

-~ -4.52

180 a = 1 + 5.06 h

Proposed for interpolation,
-1

0 ci-=1+6 :i+6
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less than 4 (10 4). The formulation for the k-factor of long bends suggqsts

a direct ratio of friction factors for a wall roughness correction as

f

Cf c rough

f fc smooth

Unfortunately, reliable data to evaluate or substantiate this hypothesis were

not found for friction factors of curved flows. Miller (5) suggests such a

wall roughness correction based on straight pipe friction factors applied to

all circular-arc bends. Idel'chik (13) restricts this correction factor to

circular-arc bends with r/HD < 1.5. Both Idel'chik (13) and Henry (14)

propose a stronger influence of wall roughness at Reynolds numbers above 2 (10)

and for short bends with r/HD > 1.5. However, a maximum effect of Cf = 2.0

is proposed by Idel'chik for any combination of wall roughness and Reynolds

number. An approximate model combining this general concensus was synthesized

for short circular-arc bends as shown in Table III.

Table III.

Effect of Wall Roughness on Short Circular-Arc Bends.

R < 4 (10) 4  C = 1.0
e f

4 (104) < R < 2 (105) Cf = 2.0

trough
r/D < 1.5 Cf -

f f
smooth

f (f rough4 
7 5

r/HO 1.5 Cf
'" ' smoot

.R> 2(105) Cf =2.

C. emax =.

s t

00

-," f1.75

' C. rough

f fsmooth

'2



% Mitre Bends

The circular-arc bend degenerates into a special case where the concentric

'1 -inner bend radius goes to zero at n/h =0.5. Geometrical interfaces, size

limitations, or ease of fabrication produce many bend restrictions with corner

points at the inside w~all and outside wall, n/h = 0. These bends and certain

variations of similar type are categorized as mitre bends. The unifying

characteristic of the flow through mitre bends is the high rate of turning.

The separation and turbulent mixing flow processes dominate the total pressure

losses in mitre bends so that Reynolds number effects are small to quite low

values. Some dispersion is noted from source to source, but an average of

data from references (1), (4), (9), and (11), plotted in Figure 6, is a good

representation of the group. For most internal flow systems found in gas

turbine engines the curve of Figure 6 can be adequately reproduced by the

* equation proposed by Hager (12) for bend angles greater than 25 degrees,

K = 2(1 - cos 3e
b 4

As a rule of thumb, between bend angles of 5 degrees and 25 degrees

K = Kb(2 + 0.02

can be used.

Figure 7 shows the evolution of the mitre bend and some of the variations

which are encountered in practice. Experience with these modified mitre bends

* has shown that the radius on the inside wall is the most influential geometry

* factor for reducing the K-factor (total pressure loss).

-. Corrections applicable to Figure 6 for these geometric variations are provided

@4 - in Figure 8.
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The data of references (4) and (13) indicate that very rough walls car, 5
increase the k-factor for mitre bends as much as 50% at Reynolds numbers above

44(10 )

cf 1 + 5 (10)(¥

where Cf x 1.5

Below a Reynolds number of 4 (10 ) the effect of roughness or Reynolds

number on mitre bend k-factor is negligible.

Effects of Other Geometrical Parameters

The basic bend model was derived for ducts of circular cross-section, but

testing has shown that the algorithn, represents flow through square ducts

almost as well. From this point the bend model can be extended to include

- ducts of elliptical and rectangular cross-section. The bend model was

formulated using the geometrical parameters D and h to accommodate this

extended scope.

*" The pressure drop factors for the flow through bends of square and circular

cross-section at the same values of r/h (including mitre bends), e, and R
e

are assumed to be negligibly different. Experimental correlations by Ward-Smith (15)
5 5

and Miller (16) demonstrated this premise for 1 (10 ) < R < 13 (10).
e

Figure 9 is a correlation of rectangular duct performance relative to circular

- ducts due to Ower and Pankhurst (17). The correction for rectangular bends

can be represented by

C + 0+ O

27
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4L 7 7

where

b/h <1 > I

m 0.2551 0.1386

The performance of elliptical ducts can be estimated from this correlation as

* a qualitative approximation. If more accurate analysis is required, reference

(9) or (14) can be consulted for extensive data on bend performance of

elliptical and rectangular ducts.

The basic bend model was derived from test data for fully developed turbulent

flow at the inlet to the bend and for a least fifty diameters of downstream

tangent length. The downstream tangent generally contributes mixing losses

- for lengths greater than two diameters. However, as the outlet tangent length

diminishes toward zero, the k-factor increases as the initial pressure

* _ recovery process in the first two to four diameters of downstream tangent is

lost. Miller (5) provides a convenient correction for downstream tangent
length, shown in Figure 10. A k* = 1.2 curve based on data in reference

b
(4) has been added ostensibly for corrections to mitre bend k-factors. For

ducts of particular rectangular cross-section Miller recommends the following

modifications to C 9-of Figure 10:

- if b/h < 0.7 and 9-. /HD > 1,
d

C+
kr 2

If the bend or downstream tangent discharges into a larger duct or plenum, a

sudden expansion loss must be added to C Note that neither the bend

k-factor nor C include the wall friction loss (4f 91- D) associated
k. d

with the downstream tangent length.

29
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The flow in gas turbine internal flow systems is often turned in annular

ducts. These annular flow paths and conventional duct paths incorporat,

turning with area change in many restrictions. The effect of turning with

- area change in circular arc bends was correlated by Henry (14), Figure 11

Data for k-factors of mitre bends with area change were compiled by Idel'chik

-- (13). A similar presentation of the data is provided in Figure 12. The

severe effect of the sharp corner on the inside wall is evident from the

. inversion experienced by the loss coefficient, CA. A sudden expansion

alleviates some of the restriction at the mitre corne-. The flow turns more

corner restricts the downstream area available for turning. The flow

contraction is amplified and the k-factor increases.

ip.'
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IV. TOTAL PRESSURE LOSS COEFFICIENTS FOR BRANCHES

The steady flows through junctions and branches differ from flows through

other restrictions discussed in that mass is increased or decreased within the

component. Most restrictions constitute series flow losses where the massflow

leaving is the same as the massflow entering. However, internal flow system-

contain many flow intersections of parallel restrictions where the local

- dynamics influence the total pressure loss. The flow model for the

intersection should include k-factors which account for the effects of mixing

in combining flows and diffusion turbulence in dividing flows 1hese flow

processes are generally a function of the flow split, which requires an

iterative solution for the correct k-factor. The flow processes in junctions

and branches behave like those in bends in many ways, but the additional

effects of mixing flows from different sources or delivering flows to

different sinks complicate their physical models. Multitudes of junction and

branch geometries exist in engineering practice. Two of the most common

geometries, symmetrical and unsymmetrical, are shown in Figure 13

At a junction or a branch, continuity must be satisfied

m3 = m2 + ml

In addition momentum and energy must be conserved:

2 2 2
P A+ PAV=(P A + pAV)cs04( " o", ~A~ 3  3 A3 v3  1 1 l A1 v1) cos 3 3 ( A1 1 1 1 1K) cos

where

P A cos 6 0 for the unsymmetrical case
1 1

m c T Tm c c T (adiabatic)-.,3 P3 3 1 P 1 2 P2 2
3 1 2
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Vazsonyi (18) attempted the analytical prediction of junction and branch

-. performance on the basis of this physical model utilizing bend flow process

analogies. The adaptation of this work for generalized junction and branch

% k-factors by the SAE (9) was unsuccessful Although a profusion of pressure

loss data exist for a multitude of geometries, the generalization and

reduction to usable k-factor parametrics is limited essentially to the basic

symmetrical and unsymmetrical varities. Williamson and Rhone (19), however,

do present a survey of special geometries.

The k-factors, k have been defined using the dynamic pressure in the
~n 3'

limb with the combined flow (leg 3). The k-factor is positive for a total

pressure loss or is negative for a total pressure gain. The k-factors

presented for junctions and branches do not include the total pressure lost to

wall friction. Consequently, the loss model for combining or dividing flows

, -with upstream tangent and downstream tangent at least three hydraulic

diameters long should be as follows:

p = k3 P3 V2) + 4f3( P V32)+ 4fn(D( V2n

Occasionally it is desirable to reference the k-factor to another leg (n),

2

kn lPn k4.3 kn P m P3n 3

,,, ( )nJ
As for bends, experimental results for circular ducts and square ducts show

* - negligible difference (1). Little influence from Reynolds number is evident

in turbulent flow. When the flow is not turbulent, the energy contribution is

generally minimal due to small dynamic pressure.

Although the following junction and branch models are based on experiments

with fluids at constant densities, the results can be applied to compressible

.'-- flows with reasonable accuracy.
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If more analytical precision is required and the restriction geomtry and flow

environment warrant, reference (20) for combining flow junctions and reference

(21) for dividing flow branches can be used for restriction modeling

Symmetrical Junctions and Branches

Symmetrical junctions and branches are often referred to as wyes because of

-_. their geometrical configuration. The data of Miller (16) correlate well with

that of other investigators and are slightly pessimistic. It is ordinarily

good design practice to err on the side of high total pressure loss, so the

Miller (5) performance maps in Figure 14 were selected for the total pressure

% loss associated with combining flows in wyes,
% -Pl - P3

1 3
S P3 v 3

Similarly, the performance maps by Mille (5) in Figure 15 were preferred for

the total pressure loss model of dividing flows in wyes,

p - p
1 3 1
13 1 PV2

23 V 3

Another common class of symmetrical junction is the 900 three-way dividing

branch or four-way cross. Miller (5) provides k-factor maps, shown in Figure

16, for the perpendicular off-take leg, 1k 3 and for the straight-through

leg, k . The performance is shown for a dividing junction with all legs, 23
of equal area and with sharp edges at the intersections.

Unsymmetrical Junctions and Branches

Junctions and branches having two of the limbs colinear are frequently

encountered in gas turbine internal flow systems. Restrictions interfacing at

90 deg tees are common. The modeling of manifolds is one of the most

important applications for such k-factor data. Fortunately, Gardel (22) has

done a comprehensive experimental program to determine the effects of

37
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changing duct sizes, lateral angles, and introducing fillets and radii at the

lateral limb. Gardel derived the following empirical equations to represent

the performance of unsymmetrical junctions (combining flow):

k--0.92 (1 X 1) ...

1 3

...*0.8 (1 I~ -( 1)Cos 6] + (2 1a( -~1

k 0.03 (1 2 [1 162_r/2 XCos I)..

-0.38 (1 -a) + (2 -~ (U 1 - 0) it

where

11 p 2 p3
k ~ and k

1 3 1/2 p3 V 2 2 3 112 p3 V

For unsymmetrical branches (dividing flow):

k 0,95 0 -r)2 2 0(. a . (0.4-0 1
1 3 22(. an-. 2

.. -0. 9 ]40.4VI(I 4L (tani2

2 2
2k 0.03 (1 -C)+ 0.35f 02 1(1 -1)

where

3 1- 3 2
k-and k

13 112 p3 V 2 23 112 p3 V2
3 33 3

.JP

.7 . . . . .

Er1



In these equations
U.Q3

for a range of lateral angle 150 < (< 1650

A
Also ,, (0 ,625 < 4 < 1)

A
3

and ND (0 <r < 0.12)

m
For compressible flows is preferred.

m3
3

".\

'6'
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V. TOTAL PRESSURE LOSS COEFFICIENTS FOR SUDDEN AREA CHANGES

The most common restrictions encountered in modeling internal flow systems for

gas turbine engines are sudden expansions and sudden contractions as

illustrated in Figure 17.

The sudden expansion loss is well represented by a one-dimensional analysi..

Although the sudden contraction appears to be the geometrical reverse of the

sudden expansion, it is not possible to obtain a comparable explicit solution

for total pressure loss from a one-dimensional flow model.

Sudden Expansion

-J

r::, Flow from a duct into a sudden enlargement can be analyzed by conserving mass,

* momentum, and energy between the discharge plane, All and the reattachment

plane, A 2' Incompressible turbulent flow is well represented by the

Borda-Carnot relation

2

k =1-A,)

where

182 P =kse ql

Laminar flow correlates poorly with the one-dimensional equations due to:

o the large velocity gradients in the profile of the efflux,

o the important shear stress contribution to reattachment with the possible

unsymmetrical flow fields in two-dimensional duct geometries.

oil.

'ft.43
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FIGURE 17 GENERAL CONFIGURATION OF SUDDEN AREA CHANGES
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4

Adiabatic compressible flow can be modeled similarly as described by fienpdict,
, et. al., (23)

1/2 Y-l 2 1/2
M (1 + -M) M (I+-M )
2 2 2 1 2 1

"iI + 'Y M 2  1 + M 2I  + P 1 \ .

where

ee -static pressure at the face of the step.

When the efflux from duct A is subsonic (0 < M < 1), the flow field in

the enlargement is also subsonic (0 < M < 1) and p /p, 1.0.
2 e

Ward-Smith (1) suggests using a parameter

MN =
1/2"Y- 1 M2

(1 + M)
2

which simplifies the subsonic equation to the recognizable quadratic form

2+ NJ2 -1~)]}~
2 2 + ) +1N

Then

2 \2 ~ 2 2~i

where

- - I ~ 2(bI) N2

and

N2

M N2
2 Y-I 2

2 2
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The total pressure ratio is determined by the expansion geometry and Mach

-* 4 numbers as

7 Y4 I

P I Y-1 2 2 (-Y-1)
2 1 2 2

P M 1+ -- M 12

MI

Then either the k-factor based on dynamic pressure

k se P I

:'_ ]!or the k-factor based on impact pressure

P

se 1*T P

k+

"' %1 -- -

can be calculated.

Singularities are encountered where A becomes very large ( 0 - 0) and2

where M becomes very small (M I - 0). Noting that N and M become1 1 2 2

-.-, zero when 0 = for any value of M the entire energy in the jet, (P - pl)

is dissipated in the expansion to P2 = Pl. Since k 1.0 at 0, = ,

1 - (p /P )

k at =0.

Numerical realities make the use of k or k = 1.0 at 0 = recommended
se SP

practice for all < ( 0.0001.

Any compressible fluid flowing adiabatically assumes a constant density charac-

ter at Mach numbers below 0.1. Consequently, the incompressible Carnot-Borda

equation for a sudden expansion loss can be used as the asymptotic value for

+
kse and kse at Ml < 0.1.
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The relationship between the k-factors based on dynamic pressure or impact

pressure are shown in Figure 18 for all subsonic sudden expansions of a

perfect gas with Y = 1.4. Although either k-factor definition is equally

accurate, physical conceptualization of the loss as an extension of the

incompressible case seems easier based on impact pressure, k +

se

When the efflux from duct AI is supercritical (M2 > 1.0) for the choked

condition, M, = 1.0, the sudden enlargement equation can be solved for the

effective step face-to-jet static pressure ratio as a function of M

22

Pe (11XY~l)/2 1 + Y M2 1/2

p1  1- Y-122
S2  I + 2 M 2

- The total pressure loss calculation in this underexpanded flow regime

p, simplifies to

SY-1 Y+ 1
"P2 % 1 + - M 2(-Y-1)

p2  2 2(-)

~2

An iterative solution can then be performed to determine the M2, p e/P

pair compatible with the given duct discharge conditions P , p . Assuming
1 1

a final subsonic Mach number, M < 1,0, the terminal conditions must conform2
to

P 2 A 2  R (1 + i-1- M 2) 2(Y

The k-factors for the supercritical sudden expansion can be easily determined

from the constant pressure ratio of the jet as

P2

k -
se 0 36980
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Since the Borda-Carnot derivation is unconcerned with the duct shape, the

quality of fit for the sudden expansion model indicates that duct shape is a

secondary effect, as shown in Table IV. Variations in the discharge port

geometry have a negligible effect on the sudden expansion loss. Even

gradually expanding ducts with divergence angles exceeding about 450

experience flow separation which behaves essentially like an abrupt

enlargement. The concept can be extended to include the separated flow (vena

contracta) at sharp-edged entrances or forward facing steps. 1he physics of

the sudden expansion model are helpful in understanding the modeling of the

k-factors for sudden contractions and sharp-edged orifices.

Table IV.
Lcss k-factor for pipe exits. Reference (24)

Fitting Description k-factor

Projecting 1.0

Sharp edged 1.0

Rounded 1.0

Sudden Contraction

Many investigators have studied the flow modeling of a duct entrance from a

fluid reservoir or an abrupt area reduction within a duct. Adiabatic flow

from an infinite reservoir into a re-entrant duct (Borda mouthpiece), Figure

19, can be accurately modeled one-dimensionally by conserving mass, momentum,

and energy between the fluid reservoir and the vena contracta,

"Y
Cc "(I + -- c)Yl -1

C-. Y M 2

c

where

V1 1- 2
1 + - lM 2) Y-1 k e P I
1+ - c se ___ 1_

lim C 2 1 or 0.47172
c 2 2

M -0
c forY = 1.4
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The total pressure loss in this type of entering (accelerating) flow is

relatively small because the conversion of pressure to velocity (as in a

nozzle) is a stable process. Consequently, the assumption of inviscid flow

between the reservoir (station 1) and the vena contracta (station c) is

appropriate. Then the sudden expansion model for compressible adiabatic flow

can be employed to evaluate the total pressure loss for flow reattachment.

This modified Hughes and Safford analysis predicts a 1.0 < k < 1.095 range
sc

for compressible flow into a Borda mouthpiece. Dodge (24) reports a range of

k-factors from 0.68 to 2.5 for incompressible flow depending upon inlet edge

conditions (modified corners to sharp). This large discrepancy with empirical

k-factor values suggests a shortcoming of the one-dimensional analysis as it

applies to sudden contraction losses. The marked curvature of the vena

contracta flow compromises the accuracy of the one-dimensional assumption

As the re-entrant length of the tube decreases to zero, the Borda mouthploce

" -- is transformed into a sharp-edged inlet. The entrance flow no longer develops

in isolation from the reservoir wall, so the momentum analysis must be

modified. Reaction of the flow with the wall assists turning, and the

incompressible contraction coefficient increases to about 0.6. Miller (5)

provides dramatic data for this effect as tube wall thickness increases for a

re-entrant inlet. The momentum equation no longer defines the total pressure

loss explicitly. The Hughes and Safford equation

1 2
k I -- 2+I
sc C2C 2  C

vc C

predicts k = 1.00 for a Borda mouthpiece and k = 0.56 for a sharp-
sc sc

edged inlet from the flow characteristics in Table V.

Table V.
Characteristics for incompressible flow in duct

entrances and exits. Reference (25)

Restriction C C C
. . . . v c D

re-entrant inlet 0.98 0.52 0.51
sharp-edged entrance 0.80 1.00 0.80
duct discharge 1.00 1.00 1.00
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v%. Benedict, et. al., (26) propose a generalized equation based on dischargc

coefficient to more accurately represent sudden contraction losses in constant

density flows with an apprnach velocity

( [ ( -(

DSc

If A /A is taken to represent C for a re-entrant inlet, k = 2.082: 12A c sc

is predicted, which better represents the empirical value. A k 0.56 is
sc

still predicted for a sharp-edged entrance where A1 is very large with

respect to the duct area. If a baseline total pressure loss coefficient is

defined for a sudden contraction as

k -
s c 2

CD

then the influence of the contraction ratio can be formulated as

._, k k 1 2-
k* A2

7 ~S sccl() I
In many composite restrictions the flow at the entrance or through a sudden

contraction occurs at nearly constant density. Then, for most pra:tical

applications to gas turbine internal flow systems, an incompressible equation

is sufficiently accurate. For A < 0.3, which includes most entrances and

V," many sudden contractions within restrictions, the recommended equation is

k = 0.5781 (1 - A2 )

If more accuracy is required or when A > 0 3, the least squares curve fit

from the test data of Benedict, et. al, (26) should be used

k = 0.57806 + 0.39543 A11 2 - 4.53854 A ..._ sc ' 3/2 A2 /5/2

+ 14.24265 A - 19.22214 A + 8.54038 A
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These data represent sudden contraction characteristics for constant density

flow into long ducts where complete reattachment is assured if the duct

contraction length is short, (i/HD) < 3, the "long hole" correction-- Sc

presented under orifice restrictions should be applied to k The effect
sc

of compressibility increased the experimental value for k as much as 12%
sc

for subsonic flow (26) Considering the uncertainties associated with data,

installation, and environment the constant density model for sudden

contractions is justified

The sudden contraction model discussed so far applies only to tubes or

entrances which are aligned with the approaching flow and have sharp inlet

edges Figure 20 provides corrections obtained for entrances oblique to the

approaching flow. One curve applies to a sudden contraction with the

downstream duct normal to the step or wall which is at an angle to the

approaching flow The other curve applies to a sudden contraction with the

downstream duct at an angle to the step or wall which is perpendicular to the

approaching flow. Figure 21 provides a correction factor which accounts for

rounding or edge break effects on sudden contraction characteristics. Then

the general contraction coefficient can be found as:

* _ 2
k =C C k (1 A).
Sc a r sc

If better analytical precision is required, reference (27) for sudden duct

enlargements and reference (28) for sudden duct contractions can be used fur

restriction modeling.
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V.TOTAL PRESSURE LOSS COEFFICIENTS FOR ORIFICES

Orifice type restrictions in gas turbine internal flow systems ordinarily

consist of a thin end wall through which a hole permits flow communication

between considerably larger upstream and downstream ducts. The inlet to an

orifice is abrupt and relatively sharp so that significant flow separation

results. A typical orifice is diagrammed in Figure 22.

CC

I CONTRACTA

0 12

FIGURE 22. SCHEMATIC FOR A TYPICAL ORIFICE RESTRICTION,

-ore 56
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The flow characteristic that distinguishes in orif ice from a long hole or

nozzle is the inability of the vena contracta, which is induced by the

sharpness of the sudden contraction, to isolate itself by flow reattachment to

the wall before the sudden expansion. Consequently, the orifice flow model

must combine a sudden contraction and a sudden expansion which are modified to

account for interactions with the special flow processes that occur at the

entrance and the exit. The conventional procedure has been to add a mndifying

k-factor, k which incorporates the interactive effects of upstream and

downstream duct geometry with the correction required to account for the

sustained separation of the flow through the hole. Consideration of the small

wall friction loss can be included. Since the complex flow processes in the

formation and disolution of the vena contracta are only qualitatively

understood, the orifice model is based upon empirical correlations for

k =sc + k + 4f i/HD + k

When the length of the small hole connecting a sudden enlargement is less than

three hydraulic diameters, the vena contracta formed at the entrance to the

orifice may not reattach within the short length. Without reattachment the

'4. sudden contraction becomes sensitive to flow conditions in the downstream'4

*. enlargement. Separated flow at the orifice exit does not conform to the model

established for a sudden expansion. An orifice model for incompressible flow

to account for the process interactions caused by separtion was derived by

Dodge (24);

k = k [I-A] where k = 0.5

1/2
k k [ksc k where k£ is defined by Figure 23

2

k S k [1-] where k = 1.0
se se Se
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The vena contracta loss for incompressible flow through thick static orifices

is evaluated by the empirical k of Figure 23. Ihe influence of approach

velocity and limited downstream expansion on the severity and extent of

." separation is corrected by

1/2
,k V. :_ k [ A [1-7 J

The performance of orifices is buffered against effects from adjacent

restrictions or tangent geometry by 1.5 hydraulic diameters or more of

straight duct. The orifice characteristics are unaffected by Reynolds numbers

in the hole that are greater than 1 (105).

Fluid compressibility exerts the strongest influence on high velocity fiow

* through orifices. Contrary to the invariant behavior of the vena contracta of

4 -incompressible flow, the separation process is a function of the orifice

pressure ratio in a compressible flow. The level of separation decreases as

-the pressure ratio, r, decreases. Although the expanded vena contracta area

reduces the extent of the separated flow, the orifice losses with compressible

flow are not decreased.

The most familiar characteristic of compressibility associated with orifice

performance is shown in Figure 24. The flow through orifices differs from

that through most restrictions in the supercritical behavior. When a typical

* 'restriction becomes critical (M = 1.0 at some flow location), the flow

parameter, 0, is maximized with respect to pressure ratio. The restriction
4t4.

is said to be choked at that location. Then the adiabatic flow rate becomes

linearly dependent upon upstream total pressure, but independent of further

reductions in restriction pressure ratio, r. On the contrary, however, an

orifice can be critical at its vena contracta (Mc = i) and still exhibit an

increasing flow parameter, 0, as the pressure ratio, r, is reduced This

behavior results from the influence that the downstream static pressuro cxerts

on the "free-jet" vena contracta. In highly separated flows like those

encountered with sharp-edged contractions and flow angularity, these

compressibility effects become exaggerated for thin (short duct) orifices.
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for thicker or If i(,, i ri (oaxil1 fJIow, the v vrid ( orttrtC t, (,rlv r onnrit I

isolated from the downstream static conditions. For short holes with ar

k/ 0 > 4 choking will rarely occur at the vena contracta. In any event,

thick orifices and relatively large orifices, where small area changes reduce

the separation, are less sensitive to the supercritical compressibility

effects. Small edge-breaks or leading edge radii radically suppress

separation. The geometry of an orifice:

sudden contraction ratio, AIA = A
1 0

inlet flow angularity, C
a

leading edge sharpness, Cr
orifice thickness, Y/H

sudden expansion ratio, A /A =
1 2

affects orifice performance in either incompressible or compressible flows.

However, the orifice pressure ratio only influences the performance of

4
orifices in compressible flow . The greatest effect is seen on thin, static

orifices operating in or near the supercritical regime.

Synthesis of an Orifice Model

Orifices encountered in gas turbine internal flow systems can encompass any

combination of geometric variables important to flow capacity, Figure 25.

Therefore, a comprehensive model for orifice flow characteristic prediction is

required. The model proposed by Dodge (24) is amenable to modifications to

achieve this flexibility:

k = k sc+ k + 4f (/HD) + k
S+ kse

Sudden Contraction

k = C C k [i-A]
sc a r sc

where flow angularity correction is provided by C (0, flow direction)
a

Figure 20, and leading edge sharpness correction is provided by C y (a. k /HD0)r sc

for chamfers or Cr = z (r/ 0) for radii from Figure 21.

.. 4Lavitating effects can be important in liquid flows
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The sudden contraction model for orifice applications is based on the

experimental work of Weisbach testing short orifices and Freeman testing

nozzles with water. Both of these investigators obtained contraction

coefficient and discharge coefficient data which resulted in

k 0 5 for small A.
sc

Notice that the sudden contraction model i, not the same model selected from

reference (26) The sudden contraction data acquired by Benedict, Carlucci,

and Swetz were for entrances to long ducts where separation reattachment arid

velocity profile recovery were attained.

Vienra Contracta

The "long hole" k-factor employed by Dodge (24) corrects for the interactions

of contraction and expansion geometry with the incompressible free-jet vena

C ont rac ta

1/2 ] 1/2
k =(CoCt) r[-A] [l-

& r

where kL is given for a static orlfice by Figure 23,

Sudden Expansion

>n,, sdcee expanisr moiel of Carnot-Bordi is used as recommended for

inrmpressible flow

+ Of

' . ;, ,, i',r. , Jr. 'udderi iexpan-ion k-factor to the impact pressure, P-p,

*r -- ( q' i' " ex* , rathor than the dynamic pressure recommended for the

,),jpri r.. . .. r t t t losses, erpralizes the expansion

S,' c, ,,€ .n,. , i()w reqime This approximation is very good for
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Although the Dodge (24) model for orifice chardcterlstics is spec if c(i]y fur

incompressible flow, it can be applied to certairn thick and/or idryl huht.

orifices in compressible flow with good accuracy. A technique has been

developed to adapt it to thin, small orifices where compressibility effects

J. are most pronounced.

Orifice Characteristics for Compressible Flow

The thin plate, / ) < 0.1, static orifice, A = ? < 0.1, is the most

familiar category that exhibits strong compressible flow effects near and in

the supercritical regime. It can be demonstrated numerically, however, that

small blunting of the leading edge, slight lengthening of the hole (9/K > 1.2),

or restricting the contraction and/or expansion ratio can mitigate the

compressible vena contracta characteristic quite rapidly. Consequently, a

relatively limited range of orifice geometry requires a more sophisticated

compressible flow analysis than that provided by the Dodge model. The

% extension of the Dodge model to these special orifice flows and the range of

applicability will be discussed.

Perry (29) demonstrated that highly separated compressible flow through

thin-plate, static orifices behaves linearly in the subcritical region

0 =V/ T-r7

V, when modeled in elliptical coordinates

:. * = m r

where m = 0.216 for air. Perry (29) represented the supercritical region as

0= (a + nr)
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which in elliptical coordinates becomts

= (a + n; F 2 (I f--

where a = 0.449 and n = 0.241 for air.

The slope of the supercritical flow model was found to be 88% of the

subcritical model slope at the choking pressure ratio,

m = 0.88 m
c

The compressible flow model proposed by Perry (29) for thin, static orifices

can be generalized to model the limited range of orifices where vena contracta

compressibility is important, Table VI. The orifice model by Dodge can be

used to generate the incompressible flow characteristics for the specific5

orifice geometry des.red. A common slope for the compressible and the

incompressible flow can be found near r 0.87 as

- 0. 87
Then n0 

. 8 *

_- and

a - nr*

where

2 Y/(Y) for Y 14

and

* 2% 4. = m [1-(r*)2].

5A flow characteristic curve generator similar to DUl in BC88 PLUS can be
used to solve for € at r using the k-factors from the Dodge orifice model.
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Table VI
Applicable range of the compressible flow parameters

for orifice models based on Perry (29).

ksc > 0.4

k > 0.65

X < 0.125 which is the same as (k+  > 0.765)

m < 0.26

It can be seen from the supercritical orifice model that a = 0) when r 0.

Therefore, a > 0.532 for air cannot be allowed.

Other more stringent flow modeling restrictions place tighter limits on the

applicable range of parameters. The entrance flow must be severely separted,

and the orifice hole must be short enough to preclude flow reattachment within

the hole. The orifice exit area ratio must provide a large expansion so that

the flow reattaches in the far downstream field of the tangent duct. If these

stipulations as quantified in Table V are met, the compressible flow

characteristics of the orifice can generally be modeled satisfactorily over

the complete range of pressure ratio as outlined.

) Example Calculations for Generalized Orifice Flow Characteristics

Two orifices have een modeled to demonstrate the calculation procedures for

i) A conventional thick-plate orifice with nozzle-like characteristics.

2) A generalized thin orifice with definite vena contracta compressibility

characteristics.

,' The detailed calculations for restriction 1 and restriction 2 are located in

the Derivations section of the Appendix. The Allison Gas Turbine Engines

version of a flow characteristic curve generator program titled DUI was

utilized to calculate the airflow parameter, 0, as a function of the total

pressure ratio, P /P Constant values for restriction k-factors were
U D

used with the exception of the FANNO wall friction calculation The Moody
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correlation for Fanning friction factor was calculated at each flow conditinr

on the curve.

Restriction 1 is nozzle-like according to the low internal k-factors 1hi

flow characteristic curve generated by DUl calculations of the Dodge model

represents the thick-plate orifice performance very well. lhis orifife will

exhibit a classical choked flow characteristic because of the minimal entran,

separation and the internal flow reattachment.

Restriction 2 exhibits definite thin orifice-like performance according to the

combintiorn of high k-factors for the loss elements and relatively low slope

in the ellIptical parameters. Since sustained entrance flow separation with

fre e et vena contracta characteristics are indicated, the flow curve will riot

choke but will continue to rise in the supercritical regime. Therefore, the

Perry model was used to predict the orifice flow curve. The Dodge model was

calculated in the DUI program to determine the orifice baseline performance in

the low pressure ratio, P /P or "incompressible" regime.

U D'

The orifice flow characteristics are derived directly from the component loss

k-factors in the DUl calculation. However, if a curve of k-factor versus flow

parameter is required for inserting an orifice into a component restriction of

a more extensive geometry, the "kurve" data can be developed from the flow

curve at each P /P as follows

*U 0

* (see note)

1 (P /P )

k --- i L

Th. "'ku'w, I ir, t r, p xampie [)~i input is the Perry static orifice Cu-v( 0

w fa'tr versu' f w)W ( d to- 4 Ths data f i e contains all of th(, i.mnr ,

f ' f 1  4 m''i, 1-Il U Fl )9 ,o pr o dur('s u 4 dq ', Perry. or " c urt

%'



Note

The calculation of (q) from 0 requires the solution of the implicit equatior

+-2 M2) 2(Y-1)

for Mach number. Thep(q can be found directly from
1

_q -Y M2

\P 2 "
(+ M)

2
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UNOMENCLATURE

Small or minor dimension of a cross--section of a rectangulir or

elliptical duct, in

a Limiting 0 of an orifice at r = 0

4 Area ratio, An/A3

A Cross-sectional area of a duct, in. 2

Aref Real or defined reference area for a flow restriction, in. 2

b Large or major dimension of a cross-secton of a rectangular or

elliptical duct, in.

C Specific heat of the air at constant pressure, Btu/lbi deg R

cv  Specific heat of the air at constant volume, Btu/lbm deg R

Ca Angularity correction for obliquely incident flow into a restriction

C A  Area change correction for bends

c c  Contraction coefficient, Ac/An

Cd Drag coefficient

CD Discharge coefficient for a restriction, m/mid

Cf Frictional influence coefficient for aerodynamically rough wall

Cg Cross-sectional area geometry correction

C 1  Influence coefficient for a general parameter which is different than

that for the reference restriction

CZ Downstream tangent correction

CM Compressibility influence coefficient for high velocity flow

Cr Edge break correction for a restriction area reduction

Cv  Velocity coefficient for a restriction, V/Vid

d Diameter of a circular cross-section, or small diameter of an annular

cross-sectional area of a duct, in.

1D Large diameter of an annular cross-sectional area of a duct, in

f Fanning friction factor for flow in straight ducts
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NOMENCLATURE (con't)

fc Darcy-Weisback friction factor for flow in curved ducts

f( ) Functional relationship of independent variables ( )

Fd Aerodynamic drag force, lbf

gc Conversion factor, 32.174 ibm ft/lbf sec
2

h Height (maximum) of a cross-section of a duct in the plane defined by

radius r normal to the bend axis (h can be the same as a or b of a
rectangular or elliptical duct for example), in.

D Hydraulic diameter of a cross-section area of a duct, in.

k Total pressure loss coefficient based on q

k+  Total pressure loss coefficient based on (P - p)

k Total pressure loss coefficient for the reference restriction
(usually in the incompressible flow regime)

Length along the centerline of a duct, in.

m Subscript slope of an orifice performance

- Mass flowrate, ibm/sec

* id Ideal m which would pass through a lossless restriction if the
avialable cross-sectional area flowed full, ibm/sec

M Mach number

n Supercritical constant for orifice performance

p Static pressure of the air, psia

P Total pressure of the air, psia

(P - p) Impact pressure of the air, psia

* Perimeter of a duct cross-sectional area, in.

q Dynamic pressure of the air, psi

Volumetric or mass flow ratio, Qn/Q3 or mn/m3

Q Volume flowrate, ft3/sec

r Radius of curvature for the centerline of a ciruclar-arc benc, or

edge break or fillet radii at tube-wall intersections, in.
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NOMENCLATURE (con't)

0 Orifice pressure ratio, Po/Pu

r Radius of a circular cross-section, in.

r Relative radius, r/ D

r Elliptical pressure ratio function for orifices, l-r 2

R Specific gas constant of the air, lbf ft/ibm deg R

Re Reynolds number

- T lotal temperature of the air, deg R

V Velocity of the air, ft/sec

Vid Velocity of an isentropie one-dimensional flow filling the same area.
ft/sec

- x Cartesian coordinate or an arbitrary geometrical variable

y Cartesian coordinate or an arbitrary geometrical variable

a •Turning loss term for bend k-factor equations

"" Complementary bend angle, degrees

T Ratio of specific heats of the air, cp/cv

_ Effective "sand grain" wall roughness, in.

" Bend angle, degrees

Sudden expansion area ratio, AI/A 2

A Sudden contraction area ratio, A2 /Aj, or AI/Ao fpr profoces

Dynamic viscosity of the air, ibm/ft sec

p Static density of the air, Ibm/ft 3

0 € Compressible flow parameter, m iT/P A, ibm ORl/2 /lbf sec

* Elliptical flow parameter function for orifices, 02
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NOMENCLATURE (con't)

Superscripts

_ Average or effective value of a nonconstant parameter

* Critical condition, M = 1.0

Subscripts

b Bend restriction

c Fluid stream contraction due to separation at an abrupt flow area
reduction, primarily a vena contracta

d Downstream tangent duct

D Downstream of a restriction

e Restriction exit area component (discharge contribution)

i Inside wall

n General location in the internal flow system

o Outside wall

sc Sudden contraction restriction

re Sudden expansion restriction

u Upstream tangent duct

U Upstream of a restriction I
v Velocity of the fluid stream

0 Free stream condition upstream of a flow obstacle

Inlet aea of a flow restriction

2 Exit area of a flow restriction

Junction or branch leg carrying the combined flow
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APPENDIX

Summary of Derivations

This Appendix contains the detailed calculations for:

Restriction 1--Orifice flow characteristics for a nozzle-like geometry. The

Dodge (24) model was used to obtain k-factors for the DUI program.

Restriction 2--Orifice flow characteristics for a thin-plate geometry. The

Perry (29) model was used to develop the flow characteristic curve. The Dodge

(24) model was used to obtain k-factors for the DUl program.

The flow characteristic curve was converted to an overall k-factor curve

(KURVE2) suitable for internal DUl use, as demonstrated by the Restriction 7

calculation.

Restriction 3--The Dodge model was used to generate an orifice flow

- characteristic representative of the minimum component losses of Table VI. An

"incompressible" flow slope of m = 0.317 was found at r - 0.87. This yields

_ a value of a = 0.544 which exceeds the theoretical limit of a = 0.532 for

air. Therefore, the need to observe the overall slope limit, m < 0.26, in

addition to the component loss limits is demonstrated.

Restriction 4--Provides a comparison of the static orifice curve calculated by

the Dodge model with the test data correlation of Perry (29). The need for an

alternative model for highly separated orifices can be seen from the flow

* characteristic discrepance at high P u/PD .

Restriction 5--Demonstrates the use of a k-factor curve for the accurate

representation of orifice performance in a DUl restriction calculation. The

CURVEl example is for the static orifice of Perry (29).

Restriction 6--Demonstrates the rapid expansion of the vena contracta in

high-speed compressible flow. It can be seen that L/ D 1.2 is the

theoretical limit for a Perry model of a static orifice.
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Restriction 7--Verifies the equivalence of the k-factor curve (KURV[2) to the

DUl flow characteristic calculated for Restriction 2.

Restriction 8 (2k)--Demonstrates an imbedded k-factor curve (KURVE2) for a

standard component within a more estensive flow characteristic model, Wv

T /P versus P /PD. (A = constant, as modeled).
-U U 0' n

Restriction 8 (A*)--Demonstrates the generalization of an extensive flow

characteristic model (in this case, restriction 8(2K)) to all geometrically

similar restrictions on the arbitrary basis of the minimum flow area, A
0

(KURVE2).

0.4"
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Restriction 1: Generalized Thick-Wall Orifice Model

Given

Oj
A /A =6.0 sudden contraction
o01

-r/ 0D 0.2 rounded edge

t/! D =1.2 orifice thickness

C/ D 1(10_ ) wall roughness

-- A /A =30. Sudden expansion
2 1

Find compressible flow characteristic y=1.4 and R =53.342 lbb ft/lbm OR

- Dodge (24) incompressible flow model

K sc + + k~ + K

k *=0.5
sc
C =0.06 Fig 21 r/ 0 0.2
r

K9 * 0.43 Fig 23 k./ D =1.2
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4f Moody correlation D = 0.35 in.
k = 0.42 in.
£=30 4 in.

A = Aj/A 0 = 0.167 01 = 0.408

= AI/A 2 = 0.033 02 = 0.183

Sudden contraction

ksc = Cr ksc[1 - A]

i¢ = (0.06) 0.5 [0.833]

= 0.025 (<< 0.4)

Vena contracta

C1/2k 1 A31/2
k=C r [i1-A ]r -

= (0.245) 0.43 ]0.913] [0.967]

= 0.093 (<< 0.65)

Wall friction

kf = 4f (/ D) Internal calculation

Sudden expansion

kse = [I - k]2 (? < 0.125)

= 0.934

Slope

m = O/r near Pu/PD < 1.15

Pu/PD 1.1283607 1.1761978
0 0.3351456 0.3757693

0.11232 0.14120
0.21458 0.27195

m 0.52346 0.51922
n 0.37128 0.36977
a 0.69829 0.69545
r* 0.52828 0.52828
0* 0.61431 0.61181

A-4



Pu/PD 1.1177461 1.1710073
0 0.2323073 0.2689874
0 0.05397 0.07235

0 19959 0.27074
m 0.27039 slightly exceeds ma 0.26724
n 0.26684 0.26528
a 0.50187 0.49894
r* 0.52828 0.52828
0* 0.44151 0.43893

'
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Restriction 2--Generalzed Thn Wal Orifice Model

Given

A A1 6.0 Sudden contraction
4.e = 450 edge break, i sc' /0 0.02 (a 900_

e = 300 hole angularity end wall approaching flow

t/! D = 0.5 orifice thickness

c/ 0 1(10 )wall roughness

A A I = 10. Sudden expansion

Find

9..compressible flow characteristic for y=1.4 and R =53.342 lbf ft/lbm OR
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Dodge (24) incompressible flow model

kO = ksc + kk + kf + kse

k =0.5
sc

Cr = 0.85 Fig. 21 -scl D = 0.02, { = 900

C= 1.35 Fig. 20 0 = 300 Weisbach Eq.

k =1.00 Fig. 23 9-/ D =0.5

4f Moody correlation D = 0.35 in.
0.18 in.
= 30 i. in.

A = AI/A O = 0.167 01 = 0.408

X = A1/A 2 = 0.100 02 = 0.316

Sudden contraction

k = Ck ]1 -A]
sc m r sc

= 1.35 (0.85) 0.5 ]0.833]

= 0.478 (> 0.4)

Vena contracta

k (C Cr ) 1/2 k A]' /2
a r sc

= (1.071) 1.00 [0.913] [0.900]

= O.BBO (< 0.65)

Wall friction

kf = 4f (k/ D) Internal calculation

Sudden expansion

kse = [ -]2 (X < 0.125)

Slope

m = near Pu/PD < 1.15

4,
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RES2-SIMULATION OF A GENERALIZED ORIFICE COMPRESSIBLE FLOW - LID = 0.5,
EDGE-BREAK PERRY MODEL BASED ON DODGE "INCOMPRESSIBSLE" PERFORMANCE FOR AIR

m =0.2674 0=.2654 a 0.4991
P PD r ME) q/P W

1.00 1.0000 0 0 0 2.255
1.00363 0.99638 0.4394 0.4788 0.00160 2.25726
1.01780 0.98251 0.09629 0.10549 0.00773 2.26281

*1.04161 0.96005 0.14470 0.15989 0.0175B 2.27240
1.07493 0.93029 0.18968 0.21203 0.03050 2.28549

- ~ 1.11775 0.89465 0.23102 0.26189 0.04577 2.30139
1.23561 0.80932 0.30373 0.35636 0.08142 2.34192
1.31332 0.76143 0.33521 0.40115 0.10082 2.34192

1 40726 0.71060 0.36383 0.44482 0.12091 2.39348

1.66159 0.60183 0.41297 0.52924 0.16201 2.45762
1.86193 0.53708 0.43620 0.57534 0,18514 2.50037
1.89293 0.52828 0.43906 0.58140 0.18820 2.50654
2.11115 0.47368 0.45326 0.61304 0.20413 2.57833
2.3 0.43478 0.46195 0.63391 0.21461 2.62267
2.5 0.40000 0.46881 0.65138 0.22334 2.68652
3.0 0.33333 0.47972 0.68140 0.23819 2.79890
3.5 0.28571 0.48588 0.69985 0,24720 2.88946

*4.0 0.25000 0.48967 0.71187 0.25302 2.96419
5.0 0.20000 0.49386 0.72585 0,25972 3.08019
7.0 0.14286 0.49716 0,73746 0.26523 3.23165
10.0 0,10000 0.49865 0.74289 0.26780 3.36077
20.0 0.05000 0.49938 0.74560 0.26907 3.35070
100.0 0.01000 0.49922 0.74501 0.26879 3,68319
1000.0 0.00010 0.49908 0.74449 0.26854 3.72341
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,,,,,/'/'.// INPUT DATASET / D D A

KURVE 1 20
0.0 0.0328 0.0653 0.0925 0.1302 0.1586 0.1823
0.2027 0.24b0 0.2790 0.3080 0.3320 0.3540 0.3730
0.3890 0.4030 0.4230 0.43b0 0.4440 0.4490
2.7940000 2.7940068 2.7940844 2.8042504 2.8195bb5 2.8322270 2.8460312
2.8611360 2.87bOlb8 2.9434909 2.9794882 3.0389848 3.077b563 3.1275b57
3.1960778 3.2702482 3.4953703 3.7851911 4.1324977 4.7688857
KURVE 2 20
0.0 0.04394 0.09629 0.14470 0.18968 0.23102 0.26907
0.30373 0.33521 0.36383 0.38965 0.41297 0.4390b 0.45326
0.46195 0.46881 0.47972 L.48588 0.49386 0.49908
2.25500 2.25726 2.26281 2.27240 2.28549 2.30139 2.32019
2.34192 2.3b&23 2.39348 2.423bb 2.45762 2.50654 2.57833
2.b3367 2.68652 2.79890 2.88946 3.08019 3.72341

1

RES 1 SIMULATION OF A GENERALIZED ORIFICE COMPRESSIBLE FLOW 24APR86
BASED ON THE DODGE MODEL - L/D = 1.2, LEADING EDGE RADIUS

5 0.10 1.40 28.97 PLOT
0.60 540.
0.10 540. 0.025 
0.10 540. 0.093 9
0.10 540. 0.42 0.3S 30.
3.00 540. 0.934 PT

125.
2

RES 2 SIMULATION OF A GENERALIZED ORIFICE COMPRESSIBLE FLOW 24APRBb
BASED ON THE DODGE MODEL - L/D = .S, EDGE BREAK, OBLIQUE ANGLE

5 0.10 1.40 28.97 PLOT
0.60 540.
0.10 540. 0.478 9
0.10 540. 0.880 Q
0.10 540. 0.18 0.35 30.
1.00 540. 0.810 PT

125.
3

RES 3 SIMULATION OF A COMPRESSIBLE FLOW STATIC ORIFICE GFH 24APR8B
LIMIT OF THE DODGE MODEL -- TABLE VI COMPONENT LOSSES

5 1.0 1.40 28.97 PLOT
1000. 100.
1.00 100. 0.40 9
1.00 100. O.b5 
1.00 100. 0.0

1000. 100. 0.7b6 PT
10.0

4
RES 4 SIMULATION OF A COMPRESSIBLE FLOW STATIC ORIFICE GFH 24APR86

BASED ON PERRY EMPIRICAL DATA AND DODGE INCOMPRESSIBLE MODEL
5 1.0 1.40 28.97 PLOT
1000. 100.
1.00 100. 0.50 Q
1.00 100. 1.34 Q
1.00 100. 0.0
1000. 100. 1.0 PT

10.05S

RES 5 STATIC ORIFICE RESTRICTION IN COMPRESSIBLE FLOW GFH 24APR86
BASED ON THE K-FACTOR DATA TABLE FOR EtPIRICAL PERRY MQDEL

4 1.0 1.40 28.97 PLOT
10.000 100.
1.0000 100.
1.0000 100. 1 9
10.000 100.

10.
6

RES 6 SIMULATION OF A COMPRESSIBLE FLOW STATIC ORIFICE GFH 24APRBb
LIMIT OF THE DODGE MODEL -- L/D 1.2

5 1.0 1.40 28.97 PLOT
1000. 100.
1.00 100. 0.50 9
1.00 100. 0.43
1.00 100. 0.024

A-9
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1000. 100. 1.0 PT
710.0

RES 7(2K)SIMULATION OF A GENERALIZED ORIFICE COMPRESSIBLE FLOW 24APR36
BASED ON THE DODGE MODEL - L/D = .5. EDGE BREAK, OBLIQUE ANGLE

4 0.10 1.40 28.97 PLOT
0.60 540.
0.10 540.

- 0.10 540. 2 Q
1.00 540.

125..r' B

RES B(2K)COMPLEX RESTRICTION MODEL INCLUDING GENERALIZED ORIFICE RES 2
BASED ON THE DODGE MODEL - L/D = .5. EDGE BREAK. OBLIQUE ANGLE

B 1.00 1.40 28.97 PLOT
1000. boo.
1.00 boo. 0.578 Q
1.00 580. 5.50 1.12850.
0.bO 540. 0.050 Q
0.10 540. 2 Q
1.00 540.
1.00 520. 3.00 1.12850.
1000. 500. 1.0 PT

125.
9

RES B(A*)COMPLEX RESTRICTION MODEL INCLUDING GENERALIZED ORIFICE RES 2
BASED ON THE DODGE MODEL - L/D .5. EDGE -REAK, OBLIQUE ANGLE

8 0.10 1.40 28.97 PLOT
1000. boo.

* - 1.00 boo. 0.578 P
1.00 580. 5.50 1.12850.
O.bO 540. 0.050 Q
0.10 540. 2 Q
1.00 520. 3.00 1.12850.

1000. 500. 1.0 PT
125.
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